Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems.
نویسندگان
چکیده
Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions and uses more water and has higher greenhouse gas (GHG) emissions than most crops. The objective of this study was to test the hypothesis that alternate wetting and drying (AWD--flooding the soil and then allowing to dry down before being reflooded) water management practices will maintain grain yields and concurrently reduce water use, greenhouse gas emissions and arsenic (As) levels in rice. Various treatments ranging in frequency and duration of AWD practices were evaluated at three locations over 2 years. Relative to the flooded control treatment and depending on the AWD treatment, yields were reduced by <1-13%; water-use efficiency was improved by 18-63%, global warming potential (GWP of CH4 and N2 O emissions) reduced by 45-90%, and grain As concentrations reduced by up to 64%. In general, as the severity of AWD increased by allowing the soil to dry out more between flood events, yields declined while the other benefits increased. The reduction in GWP was mostly attributed to a reduction in CH4 emissions as changes in N2 O emissions were minimal among treatments. When AWD was practiced early in the growing season followed by flooding for remainder of season, similar yields as the flooded control were obtained but reduced water use (18%), GWP (45%) and yield-scaled GWP (45%); although grain As concentrations were similar or higher. This highlights that multiple environmental benefits can be realized without sacrificing yield but there may be trade-offs to consider. Importantly, adoption of these practices will require that they are economically attractive and can be adapted to field scales.
منابع مشابه
Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives
Rice (Oryza sativa L.) cultivation is critically important for global food security, yet it also represents a significant fraction of agricultural greenhouse gas (GHG) emissions and water resource use. Alternate wetting and drying (AWD) of rice fields has been shown to reduce both methane (CH4) emissions and water use, but its effect on grain yield is variable. In this three-year study we measu...
متن کاملComment on "Growing rice aerobically markedly decreases arsenic accumulation".
In a detailed study conducted with potted plants in a greenhouse, Xu et al. (1) recently showed that reducing conditions in soil water maintained by flooding are a significant factor contributing to the uptake of As by rice plants. This is an important issue relevant to human health because a portion of the As taken up by the rice plant is transferred to the rice grain and eventually eaten. We ...
متن کاملImproving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films
In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially add...
متن کاملAssessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years.
Assessments of the efficacy of mitigation of greenhouse gas (GHG) emissions from paddy rice systems have typically been analyzed based on field studies. Extrapolation of the mitigation potential of alternative management practices from field studies to a national scale may be enhanced by spatially explicit process models, like the DeNitrification and DeComposition (DNDC) model. Our objective wa...
متن کاملResponse of different rice cultivars (Oryza sativa L.) to water-saving irrigation in greenhouse conditions
Due to increasing water and growing demand for food a more efficient water use system is needed for agriculture. This is more evidence for rice production with a higher water use for economical production. A large cultivar×water regime interaction exists for grain yield in rice. Therefore, information is required to adopt new rice cultivars with high yield potential under water-saving condition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Global change biology
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2015